KONSEP NILAI UANG TERHADAP WAKTU

PENDAHULUAN
Konsep nilai waktu uang pada dasarnya mengungkapkan bahwa uang yang anda terima sekarang berbeda nilainya bila dibandingkan dengan uang yang anda terima satu bulan dari sekarang misalnya. Pengaruh waktu terhadap nilai uang (the time value of money) di masa yang akan datang menyangkut penanaman dana ke dalam suatu investasi, baik investasi jangka pendek maupun jangka panjang. Berdasarkan pengaruh waktu nilai uang akan berubah di waktu yang akan datang kalau jumlahnya sama, hal ini disebabkan karena perkembangan perekonomian di mana masyarakat semakin tahu arti perkembangan perekonomian dan bagaimana dampaknya terhadap harga-harga secara umum. Oleh karena itu pengertian dari nilai uang terhadap waktu adalah suatu konsep yang menyatakan bahwa nilai uang sekarang akan lebih berharga dari pada nilai uang masa yang akan datang atau suatu konsep yang mengacu pada perbedaan nilai uang yang disebabkan karena perbedaaan waktu.


3.1 Pertimbangan Pengembalian terhadap modal
Mempunyai sebuah usaha sudah pasti menjadi impian untuk beberapa orang. Mungkin kendala yang dihadapi seseorang untuk membuka usaha adalah modal usaha, hai ini yang disinyalir membuat banyak orang mengurungkan niatnya untuk merintis sebuah usaha.
Modal untuk menjalankan usaha memang tidak sedikit, namun ada modal dalam bentuk yang lain seperti modal tempat, kebutuhan awal  hingga modal peralatan. Sementara untuk urusan dana, anda dapat lebih tenang karena sekarang ini ada banyak pinjaman kredit yang tujuannya untuk investasi yang telah difasilitasi beberapa bank.
berikut pertimbangan mengajukan pinjaman modal usaha, antara lain:
1. Kemampuan bayar.
2. Resiko.
3. Bandingkan satu bank dengan yang lain.
4. Dokumen pendukung.
Pengembalian modal (Return on Capital - ROC) adalah rasio yang digunakan dalam bidang keuangan, penilaian, dan akuntansi. Rasio diperkirakan dengan membagi laba usaha setelah pajak (NOPAT) dengan nilai buku dari modal yang diinvestasikan.

3.2 Asal mula Bunga
Bunga merupakan sebuah pinjaman atas penggunaan sejumlah uang untuk keperluan finansial. Sedangkan suku bunga adalah persentase dari sejumlah uang yang dipinjam berdasarkan waktu.Sebelum orang mengenal  uang, mereka selalu menggunakan sistem barter. Sistem ini memang cukup efektif dan berperan penting di dalam kehidupan masyarakat. Barang yang ditukar dapat diganti dengan barang yang diinginkan. Setelah sekian lama, muncul masalah baru dari sistem barter yaitu orang yang ingin membeli barang tertentu tidak bisa ditukar dengan barang miliknya. Menukar 15 ekor ayam memang bisa ditukar dengan 1 gerobak. Bagaimana jika kita ingin menukar 4 ekor ayam? Apakah akan ditukar dengan seperempat gerobak? Hal itu tidak mungkin. Dengan adanya bunga maka satu dollar yang dimiliki sekarang akan lebih berharga dari satu dollar yang akan diterima beberapa tahun dari saat ini diakibatkan adanya kesempatan untuk menginvestasikan uang tersebut dan hasilnya akan dikembalikan plus dengan suku bunganya.

3.3 Bunga
SederhanaMerupakan bunga yang dibayarkan hanya pada pinjaman atau investasi pokok saja.Jumlah uang dari bunga sederhana merupakan fungsi dari variabel-variabel :- Pinjaman pokok- Tingkat bunga per tahun- Lamanya waktu pinjaman
Untuk menghitung bunga sederhana :
Si = Po (i)(n)
Dimana :
Si = jumlah bunga sederhanaPo =pinjaman atau tabungan pokoki = tingkat bungan = jangka waktu

3.4 Bunga Majemuk
Merupakan bunga yang dibayarkan dari hasil pinjaman (investasi) ditambahkan terhadap pinjaman pokok secara berkala, sehingga bunga yang dihasilkan dari pokok pinjaman dibungakan lagi bersama-sama.

Untuk menghitung bunga Majemuk
FVn = P(1+i) atau FVn = Po (FVIFi,n)

Dimana :
FVn = Future Value tahun ke-n
FVIFi,n = Future Value Interest Factor (Nilai majemuk dengan tingkat bunga i% untuk n periode)


3.5 Konsep Keekivalenan
Merupakan Alternatif-alternatif yang harus dibandingkan sejauh mungkin apabila alternatif-alternatif ini memberikan hasil yang sama, memberikan kegunaan yang sama atau menyelesaikan fungsi yang sama. Dalam membandingkannya kita harus menyederhanakannya kedalam suatu basis keekivalenan yang tergantung pada:
a.      Tingkat bunga.
b.      Jumlah uang yang terlibat.
c.       Waktu penerimaan dan pengeluaran uang.
d.      Sifat yang berkaitan dengan pembayaran bunga atau laba terhadap modal yang ditanamkan dan modal awal yang diperoleh kembali.


3.6 Notasi dan Diagram/Tabel Arus Kas
Konsep Arus Kas (cash flow)
Arus kas (cash flow) adalah aliran nilai atau dana moneter (dollar) yang digunakan sebagaibiaya (inputs) untuk menghasilka keutungan (outputs). Arus kas (cash flow) tersebutdihasilkan dari sebuah proyek investasi.

Notasi

Fungsinya untuk menyederhanakan subjek pada analisis ekonomi, ada beberapa simbol-simbol yang diperkenalkan untuk mewakili  macam-macam arus kas dan faktor-faktor bunga. Berikut ini adalah simbol-simbol yang digunakan:
P = nilai atau jumlah mata uang pada waktu sekarang ($)
F = nilai atau jumlah mata uang pada waktu yang akan datang ($)
N = jumlah dari periode bunga
i = tingkat suku bunga per periode (%)

Diagram Arus Kas
Cara termudah untuk pendekatan masalah-masalah dalam analisis ekonomi adalah menggambar sebuah gambar atau diagram. Gambar tersebut harus menunjukkan 3 hal, yaitu:
      1.      Interval waktu yang dibagi ke dalam jumlah yang sesuai dari periode yang sama.
      2.      Semua arus pengeluaran kas (deposito, pengeluaran, dll) dalam masing-masing periode.
      3.      Semua arus pemasukan kas masuk (penarikan, pendapatan, dll) pada setiap periode. Tabel dan diagram arus kas juga menggambarkan tipe arus kas itu sendiri, contohnya untuk pengeluaran pada periode ke-0 bisa merupakan investasi awal, biaya konstruksi dan lain-lain dan untuk cash flow diakhir tahun bisa termasuk nilai sisa yakni nilai dari suatu peralatan atau fasilitas yang dapat dijual pada akhir dari proyek.










End of Year
Receipts / Disbursements
0
-$ 15,000
1
$5,000
2
$5,000
3
$5,000
4
$7,000









Tabel dan diagram arus kas juga menggambarkan tipe arus kas itu sendiri, contohnya untuk pengeluaran pada periode ke-0 bisa merupakan investasi awal, biaya konstruksi dan lain-lain dan untuk cash flow diakhir tahun bisa termasuk nilai sisa yakni nilai dari suatu peralatan atau fasilitas yang dapat dijual pada akhir dari proyek.


3.7 Tidak diketahui nilai awal, diketahui nilai akan datang
Nilai Sekarang (Present Value)
Nilai sejumlah uang yang saat ini dapat dibungakan untuk memperoleh jumlah yang lebih besar di masa mendatang. Nilai saat ini dari jumlah uang di masa datang atau serangkaian pembayaran yang   dinilai pada tingkat bunga yang ditentukan:
PV = FV / (1+i)n
Keterangan:
PV   =  Present Value (Nilai Sekarang)
FV   =  Future Value (Nilai yang akan datang)
i       =  Interest/suku bunga
n      =  Jangka waktu dana dibungakan
Contoh :
Dua tahun lagi Dika akan menerima uang sebanyak Rp 50.000,00. Berapakah nilai uang tersebut sekarang jika tingkat bunga adalah 12 % setahun?
Diketahui :     
FV  =  50.000,00  
i      =  0,12
n     =  2
Ditanya : PV ?
Penyelesaian:
PV = FV / (1+i)n
PV = 50.000 / (1 + 0,12)(2)
PV = 50.000/2,24
PV = 22.321,43
Jadi, nilai sekarang uang milik Dika adalah Rp 22.321,43,00 

Nilai yang Akan Datang (Future Value) 
Future value yaitu nilai uang yang akan diterima dimasa yang akan datang dari sejumlah modal yang ditanamkan sekarang dengan tingkat discount rate (bunga) tertentu. 
Nilai waktu yang akan datang dapat dirumuskan sebagai berikut :
FV = PV(1+i)n
Keterangan :
FV  =  Future Value (Nilai yang akan datang)
PV  =  Present Value (Nilai sekarang)
i      =  Interest/suku bunga       
n    =  Jangka waktu dana dibungakan                                        
Contoh :
Tuan Agus pada 1 Januari 2010 menanamkan modalnya sebesar Rp 100.000.000,00 dalam bentuk deposito di bank selama 1 tahun, dan bank bersedia memberi bunga 10% per tahun, maka pada 31 Desember 2010. Tuan Agus akan menerima uang miliknya yang terdiri dari modal pokok ditambah bunganya.
Diketahui : 
PV  =  100.000.000               
i     =  10% = 10/100 = 0,1
n    =  1
Ditanya : FV ?
Penyelesaian:
FV = PV(1 + i)n
FV = 100.000.000 ( 1 + 0,10 )1
FV = 100.000.000 ( 1 + 0,1 )
FV = 100.000.000 (1,1)
FV = 110.000.000
Jadi, nilai yang akan datang uang milik Tuan Agus adalah Rp 110.000.000,00 


3.8 Tidak Diketahui Nilai Seragam, Diketahui Nilai Awal
 Pada deret gradien panjang periode adalah N, tetapi aliran kas dalam periode 1 adalah 0.Beberapa faktor yang mempengaruhi gradien antara lain nilai sekarang, annuitas, atau nilai masaakan datang.P = G (P/G, i, N) atau G = P (G/P, i, N) (3.9)A = G (A/G, i, N) atau G = A (G/A, i, N) (3.10)F = G (F/G, i, N) atau G = F (G/F, i, N) (3.11)Beberapa masalah arus kas melibatkan peneriman-peneriman atau pengeluaran-pengeluaran yangdiproyeksikan agar meningkat atau berkurang.


3.9 Tidak diketahui nilai akan datang, diketahui nilai awal
Jika suatu jumlah P rupiah ditanamkan pada suatu saat sekarang dan i merupakan tingkat bunga per periode (keuntungan atau pertumbuhan), jumlahnya akan meningkat dari sebesar P menjadi P+Pi = P(1+i) pada akhir periode pertama; pada akhir dari dua periode besarnya akan meningkat menjadi P(1+i)(1+i) = P(1+i)² ; pada akhir dari tiga periode, besarnya akan meningkat menjadi P(1+i)² (1+i) = P(1+i)³ ; dan pada akhir dari n periode jumlahnya akan meningkat menjadi :
F = P (1+i)

3.10 Gradient Seragam
Pada deret gradien panjangnya periode adalah N, tetapi aliran kas dalam periode 1 adalah 0. Beberapa faktor yang mempengaruhi gradien antara lain nilai sekarang, annuitas, atau nilai masa akan datang.
P = G (P/G, i, N) atau G = P (G/P, i, N) (3.9)
A = G (A/G, i, N) atau G = A (G/A, i, N) (3.10)
F = G (F/G, i, N) atau G = F (G/F, i, N) (3.11) Beberapa masalah arus kas melibatkan peneriman-peneriman atau pengeluaran-pengeluaran yang diproyeksikan agar meningkat atau berkurang. Jumlah secara konstan, G, pada setiap periode. Situasi itu dapat dimodelkan dengan suatu kemiringan/gradient yang seragam (uniformgradient/arithmetic gradient).



3.11 Suku Bunga terhadap Waktu
Suku Bunga mempunyai berbagai faktor, salah satunya adalah faktor jangka waktu. Faktor jangka waktu sangat menentukan. Semakin panjang jangka waktu pinjaman, akan semakin tinggi bunganya, hal ini disebabkan besarnya kemungkinan resiko macet di masa mendatang. Demikian pula sebaliknya, jika pinjaman berjangka pendek, bunganya relatif rendah.


3.12 Tingkat Suku Bunga Nominal dan Suku Bunga Efektif

Tingkat suku bunga nominal (nominal rate) disebut juga presentase suku bunga tahunan (annual percentage rate, APR).  Merupakan tingkat suku bunga yang tertera (stated) atau yang tercatat (quoted).  Adalah tingkat suku bunga yang dipakai oleh bank, perusahaan kartu kredit, penyedia kredit pendidikan, dealer mobil, dan lainnya yang akan dikenakan pada pinjaman.  Ini juga merupakan bunga yang dibayarkan bank atas deposito. 
Perhatikan bahwa jika ada dua bank menawarkan kredit pinjaman dengan tingkat bunga APR yang sama tetapi pembayarannya harus dilakukan pada periode yang berbeda-beda, maka belum tentu kedua bank tersebut memberikan tingkat suku bunga yang sama.  Artinya salah satu sebenarnya dapat membebankan jauh lebih banyak daripada yang lainnya.  Jadi untuk membandingkannya harus menggunakan tingkat suku bunga efektif.

Tingkat suku bunga efektif (efektif rate) disingkat menjadi EFF%, disebut juga tingkat suku bunga ekuivalen tahunan (equivalent annual rate, EAR).  Tingkat suku bunga ini adalah tingkat suku bunga yang akan menghasilkan nilai akhir (di masa depan) yang sama menurut bunga majemuk tahunan seperti juga pada bunga majemuk yang lebih sering dengan memberikan suatu tingkat suku bunga nominal tertentu.  Semua tingkat suku bunga nominal dapat dikonversi menjadi tingkat suku bunga ekuivalen tahunan, atau EFF%.  Ketika melakukan perbandingan di antara beberapa pinjaman atau investasi yang melakukan pembayaran pada jangka waktu yang berbeda-beda, harus menggunakan EEF%.

Komentar

Postingan populer dari blog ini

PERBEDAAN KEPRIBADIAN DAN KEBUDAYAAN BANGSA TIMUR DAN BANGSA BARAT

SIMULASI PENDETEKSI BANJIR MENGGUNAKAN ULTRASONIK SENSOR PADA PROTEUS

POLITIK DAN STRATEGI NASIONAL